48.6 (C-3'),52.0 (C-5'),30.5 (C-6'),55.7 (C-7'),134.7 (C-8'), 114.5 (C-9'), 118.4 (C-10'), 110.2^a (C-11'), 145.1 (C-12'), 136.9 (C-13'), 25.8 (C-14'), 80.2b (C-15'), 31.1 (C-16'), 32.7 (C-17'), 65.3' (C-18'), 36.5 (C-19'), 44.6d (C-20'), 63.9 (C-219, 28.4 (C-229, 47.7 (C-23'), 131.4 (C-2), 48.6 (C-3), 51.3 (C-5), 17.8 (C-6), 105.9 (C-7), 128.7 $(C-8)$, 117.9 $(C-9)$, 121.7 $(C-10)$, 120.4 $(C-11)$, 110.7^a $(C-12)$, 134.4 (C-13), 42.0 (C-14), 80.6b (C-15), 82.1 (C-16), 43.3 (C-17), 66.3" $(C-18)$, 37.6 $(C-19)$, 43.8^d $(C-20)$, 56.7 $(C-21)$, 173.6 $(C=0)$, 54.0 (CO_2CH_3) , 54.0 (OCH_3) (a-d indicate assignments may be interchanged); CD (MeOH, *c* 0.7) At *0* (224 nm), -29.0 (230), -3.7 (243), -8.7 (265), 0 (287), -1.8 (308), 0 (325).

(b) When the addition of sodium acetate was left out of the preceding procedure and the reaction mixture (starting from 250 mg of **4)** held at reflux for 1.5 h, the development of two less polar products was observed by TLC. The usual workup followed by PLC (silica; benzene-ethanol-NH₃, 89:10:1) gave $48 \text{ mg } (20\%)$ of **2',16':16,17-dianhydrovobtusamine,** 105 mg (43%) of 16,17 anhydrovobtusamine, 21 mg (8%) of 16-isovobtusamine **5,** and 33 mg (13%) of vobtusamine **3.**

2',16':16,17-Dianhydrovobtusamine had the following: *R,* 0.58 [emerald green (CAS)]; UV (MeOH) λ_{max} 228, 275, 314 nm (log ϵ 4.45, 4.20, 3.92); **IR (CHCl₃) 2840, 2800, 1725 cm⁻¹; mass spectrum** (265 "C), *m/z* 698 (M+., 22), 560 (231,266 (30), 149 (64), 138 (100); ¹H NMR δ 3.60 (3 H, s, ArOCH₃), 4.00 (3 H, s, CO₂CH₃), 6.07 (1 H, s, H-17), 6.60-7.60 (7 H, m, aromatic protons); 13C NMR (inter alia) 145.3 (C-2'), 43.7 (C-6'), 50.6 (C-7'), 102.0 (C-16'), 33.5 (C-22'), 163.8 (C=O). 52.3 (C-23'), 38.4 (C-14), 85.7 (C-15), 127.0 (C-16), 125.2 (C-17),

16,17-Anhydrovobtusamine had the following: *R,* 0.46 [blue (CAS)]; UV (MeOH) λ_{max} 228, 263, 312 nm (log ϵ 4.52, 4.24, 3.98); IR (CHCl,) 2840,2800,1725 cm-'; mass spectrum (250 "C), *m/z* 716 (M+*, 100), 698 (14), 560 (16), 421 (14), 393 (27), 149 (37), 138 (74); ¹H NMR δ 3.46 (3 H, s, ArOCH₃), 4.02 (3 H, s, CO₂CH₃), 6.10 (1 H, s, H-17), 6.60-6.85 (3 H, m, **H-Y,** H-lW, H-ll'), 7.05-7.60 (4 H, m, aromatic protons); 13C NMR (inter alia) 27.8 (C-22'), 47.4 (C-23'), 130.0 (C-2), 84.5 (C-15), 127.3 (C-16), 125.8 (C-17), 163.8 $(C=0)$.

Based-Catalyzed Epimerization of Vobtusamine $(3 \rightarrow 5)$. A solution of 15 mg (0.02 mmol) of vobtusamine **(3)** in 0.5 mL of tetramethylguanidine was stirred at room temperature for 1.5 h under nitrogen, poured into water and extracted with ether. The crude reaction mixture showed a 68:32 HPLC ratio of **5** and **n a.**

Registry No. 2, 19772-79-3; **3,** 84009-34-7; **3** (2',16':16,17-dianhydro), 84009-36-9; 3 (16,17-anhydro), 84009-37-0; 4, 84009-35-8; **5,** 84048-13-5.

Conjugate Addition of l-(Phenylthio)-l-(trimethylsilyl)-2-propene to Unsaturated Ketones

Keith S. Kyler, Michael A. Netzel, Simeon Arseniyadis, and David S. Watt*

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received June 7, 1982

The reactions of unsymmetrical, sulfur-substituted, allyllithium reagents 1 with alkyl halides, $\frac{1}{2}$ epoxides, $\frac{2}{3}$ and carbonyl compounds³ proceed with predominant α re-

gioselectivity to give adducts **2** rather than adducts **3** (Scheme I). Exceptions to this generalization include the reactions of (alky1thio)allylcopper reagents with allylic halides,^{3a,b} (arylthio)allyllithium reagents with ketones in the presence of **N,N,N',N'-tetramethylethylenediamine,** hexamethylphosphoramide, or 1,4-diazabicyclo^[2.2.2]oc $tane^{1a}$ and the doubly metalated derivative of 2propenethiol with various electrophiles. 4 In addition, the alkylation of various ketene dithioacetals exhibits similar γ regioselectivity in certain cases.⁵ We recently demonstrated that **l-(phenylthio)-l-(trimethylsilyl)-2-propene (4)** also exhibits γ regioselectivity in reactions with aldehydes and ketones,⁶ and we now report the reactions of 4 with various unsaturated ketones.'

In contrast to the high degree of α regioselectivity noted for the addition of (arylthio)- or (alky1thio)allyllithium reagents to enones,^{3d} the addition of the anion of 4 to enones **5** proceeds exclusively with γ regioselectivity. Also, unlike the results reported by Binns and Haynes, 3d 1,4addition predominates over 1,2-addition even in the absence of hexamethylphosphoramide. With 2-cyclohexenone (5a), the addition furnished the $\gamma/1,2$ -adduct **6** and the $\gamma/1,4$ -adduct **7** (Scheme II) in a 12:88 ratio in 75% yield in the presence of hexamethylphosphoramide and in a 22:78 ratio in 61% yield in the absence of hexamethylphosphoramide. Careful scrutiny of the crude product failed to reveal any of the $\alpha/1,2$ - or $\alpha/1,4$ -adducts. Although the same degree of γ regioselectivity was maintained in other enone reactions, the proportion of 1,2- and 1,4-addition varied in a manner that was not always predictable. For example, the addition of **4** to cyclopentenone **(5c)** or cycloheptenone **(5d)** led to the $\gamma/1,2$ -adducts **6** and $\gamma/1,4$ -adducts 7 in 50:50 and 48:52 ratios, respectively,

0022-3263/83/1948-0383\$01.50/0 *0* 1983 American Chemical Society

^{(1) (}a) Normant, H.; Cuvigny, T. Bull. Soc. Chim. Fr. 1965, 1881. (b)
Biellmann, J. F.; Ducep, J. B. *Tetrahedron Lett*. 1968, 5629. (c) Biell-
mann, J. F.; Ducep, J. B. *Ibid*. 1969, 3707. (d) Biellmann, J. F.; Ducep, J. B. *Ibid.* **1970, 2899.** (e) van Tamelen, E. E.; Holton, R. A.; Hopla, R. E.; Konz, W. E. *J. Am. Chem. SOC.* **1972, 94, 8228.** *(0* Oshima, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. *Ibid.* **1973,95,2693.** *(9)* Atlani, P. M.; Biellmann, J. F.; Dube, S.; Vicens, J. J. *Tetrahedron Lett.* **1974, 2665.** (h) Yamamoto, Y.; Yatagai, H.; Maruyama, K. *J. Chem.* SOC., *Chem. Commun.* **1979, 157. (2)** Stotter, P. L.; Hornish, R. E. *J. Am. Chem.* SOC. **1973, 95, 4444.**

⁽³⁾ (a) Oshima, K.; Yamamoto, H.; Nozaki, H. *J. Am. Chem. SOC.* **1973,** 95, 7926. (b)Oshima, K.; Yamamoto, H.; Nozaki, H. *Bull. Chem. Soc.*
Jpn. 1975, 48, 1567. (c)Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Org.
Chem. 1980, 45, 195. (d)Binns, M. R.; Haynes, R. K. *Ibid.* 1981, 46, 3790. **(4)** Geiss, K.; Seuring, B.; Pieter, R.; Seebach, D. *Angew. Chem., Int.*

Ed. Engl. **1974,** *13,* **479.**

^{(5) (}a) Murphy, W. S.; Wattanasin, S. Tetrahedron Lett. 1979, 1827.

(b) Murphy, W. S.; Wattanasin, S. J. Chem. Soc., Perkin Trans. 1 1980, 2678. (c) Ziegler, F. E.; Tam, C. C. J. Org. Chem. 1979, 44, 3428.

(6) Kyler, K.

⁽⁷⁾ For reactions of sulfur-substituted nucleophiles (other than allylic anions) with various unsaturated carbonyl compounds, see: (a) Mukaiyama, T.; Narasaka, K.; Furusato, M. J. Am. Chem. Soc. 1972, 94, 8641.
(b) Herrmann, J. L.; Richman, J. E.; Schlessinger, R. H. *Tetrahedron*
Lett. 1973, 3271. (c) Ostrowski, P. C.; Kane, V. V. Ibid. 1977, 3549. (d)
Ziegle F. E.; Tam, C. C. *Tetrahedron Lett.* **1979, 4717.**

Table **I.** Addition of Anions Derived from 4 or 8 to Enones 5

enone 5	anion of	% HMPA- THF	ratio of $\gamma/1,2$ and $\gamma/1, 4$ products (% isolated yield)
2-cyclohexenone (5a)	4	5	12:88(75)
3-methylcyclo- hexenone (5b)	4	5	57:43(63)
cyclopentenone (5c)	4	5	50:50(49)
cycloheptenone (5d)	4	5	48:52(52)
5d	4	30	32:68(63)
benzalacetone (5e)	4	5	59:41 (64)
5e	4	20	42:58(65)
5e	8	5	53:47(63)
chalcone (5f)	4	5	55:45(75)

unlike the predominant $\gamma/1,4$ -selectivity in the cyclohexenone case. These ratios did not change appreciably when **l-(n-butylthio)-l-(trimethylsilyl)-2-propene (8)** was substituted for **4** in analogous additions or when the percentage of HMPA in the reaction medium was varied. Regeneration of the lithium alkoxide of the $\gamma/1,2$ -adduct **6** $(n = 3)$ did not result in any of the $\gamma/1,4$ -adduct 7, suggesting at least for this case that the 1,4-addition product is the result of kinetic control.3d

Although the presence or absence **of** copper(1) was reported to have little influence on the product distribution of reactions of (alky1thio)allyllithium reagents and enones,^{3b} we elected to examine the organocuprates derived from **4.** We noted that the addition of copper(1) salts, particularly cuprous cyanide, in the presence of trimethyl phosphite led unexpectedly to significant increases in the $\gamma/1$,2-adduct. For example, the addition of the organolithium derivative of 4 to chalcone led to the $\gamma/1,2$ - and $\gamma/1,4$ -adducts in a 55:45 ratio whereas the addition of the organocuprate of 4 led to the $\gamma/1,2$ - and $\gamma/1,4$ -adducts in a 95:5 ratio. We do not, as yet, understand the underlying reasons for the regioselectivity change, but clearly the generalization that copper(1) promotes conjugate additions must be interpreted with some caution in dealing with sulfur-containing organometallic reagents.

Experimental Section

Infrared spectra were determined on a Beckman Microlab 600 spectrometer. The abbreviation TF denotes thin film. NMR spectra were determined on a JEOL 270-MHz spectrometer. Mass spectra were determined on either a Varian MAT CH5 or a Du Pont CEC 21-10B mass spectrometer. Elemental analyses were performed by Atlantic Microlabs, Atlanta, GA.

General Procedure for the Addition of the Anion **of** 1- **(Phenylthio)-l-(trimethylsilyl)-2-propene** (4) to Enones. Addition to Cyclohexenone (5a). To 287 mg (1.3 mmol) of 4 in 2.0 mL of THF at -78 "C under a nitrogen atmosphere were added 1 mL of 1.31 M sec-butyllithium in cyclohexane and 0.1 mL of HMPA. The orange solution was stirred for 2 h, and 96 mg (1.0 mmol) of cyclohexenone (5a) in 0.5 mL of THF was added. The solution was stirred an additional 4 h and quenched with 1 mL of water. The product was diluted with ether, washed with water, dried over anhydrous MgSO₄, and chromatographed on silica gel (1:3:5 ether-hexanes-CH₂Cl₂) to afford the $\gamma/1,2$ -product 6a: 9%; R_f 0.38; IR (TF) 3396, 1582 cm⁻¹; NMR (CDCl₃) δ 0.11 $(s, 9, SiMe₃), 2.76$ (d, $J = 7$ Hz, 2, $CH₂CH=C(SPh)SiMe₃$), 5.6–5.9 (m, 2, vinylic ring H), 6.83 (t, $J = 7$ Hz, 1, CH₂CH= $C(SPh)Sim_{e_3}$), 7.1-7.5 (m, 5, aromatic H); mass spectrum **(70** eV), m/e 318 (M'), 300, 222, 167; exact mass calcd for $C_{18}H_{26}OSSi$ m/e 318.1474, found 318.1497.

Another band (R_f 0.46) was eluted to afford the $\gamma/1,4$ -product 7a: 66%; IR (TF) 1709, 1581 cm⁻¹; NMR (CDCl₃) δ 0.11 (s, 9, SiMe_3), 6.61 (t, $J = 7$ Hz, 1, CH₂CH=C(SPh)SiMe₃), 7.1-7.5 (m, 5, aromatic H); mass spectrum (70 eV), m/e 318, 222, 209, 208, 167.

Anal. Calcd for $C_{18}H_{26}OSSi$: C, 67.86; H, 8.23. Found: C, 67.65; H, 8.26.

Adducts of 3-Methylcyclohexenone (5b). $\gamma/1,2$ -Product 6b: IR (TF) 3400, 1590 cm⁻¹; NMR (CDCl₃) δ 0.12 (s, 9, SiMe₃), 1.76 (s, 3, vinyl CH₃), 2.74 (d, $J = 7$ Hz, 2, CH₂CH=C(SPh)SiMe₃), 5.44 (m, 1, CH=C(CH₃)), 6.84 (t, $J = 7$ Hz, 1, CH₂CH=C- $(SPh)Sim_e$; mass spectrum (70 eV), m/e (relative intensity) 332 (M', loo), 222 (27), 221 (64), 167 (13); exact mass calcd for $C_{19}H_{28}OSSi$ m/e 332.1631, found 332.1637.

 γ /1,4-Product 7b: IR (TF) 1706, 1583 cm⁻¹; NMR (CDCl₃) δ 0.10 (s, 3, SiMe₃), 1.05 (s, 3, CH₃), 6.76 (t, $J = 7$ Hz, $CH_2CH=C(SPh)Sim_e$; mass spectrum (70 eV), m/e (relative intensity) 332 (M⁺, 2), 314 (53), 231 (100), 222 (30), 167 (7); exact mass calcd for $C_{19}H_{28}OSSi$ m/e 332.1631, found 332.1628.

Adducts **of** Cyclopentenone (5c). The adducts were inseparable, and analysis of NMR signals for SiMe_3 groups indicated a ca. 1:1 ratio of $\gamma/1,2$ - and $\gamma/1,4$ -adducts.

Adducts **of** Cycloheptenone (5d). **y/** 1,2-Product 6d: IR (TF) 3400, 1581 cm⁻¹; NMR (CDCl₃) δ 0.11 (s, 9, SiMe₃), 6.60 (t, $J = 7$ Hz, 1, CH₂CH=C(SPh)SiMe₃); mass spectrum (70 eV), m/e (relative intensity) 332 (M', *5),* 314 (22), 222 **(loo),** 167 (21); exact mass calcd for $C_{19}H_{28}OSSi$ m/e 332.1631, found 332.1633.

 $\gamma/1$,4-Product 7d: IR (TF) 1698, 1581 cm⁻¹; NMR (CDCl₃) δ 0.11 (s, 9, SiMe₃), 6.60 (t, *J* = 7 Hz, 1, CH₂CH=C(SPh)SiMe₃); mass spectrum (70 eV), m/e (relative intensity) 332 (M⁺, 52), 293 (19), 281 (33, 269 (29), 223 (21), 131 (99), 119 (100); exact mass calcd for $C_{19}H_{28}OSSi m/e 332.1631$, found 332.1636.

Adducts of Benzalacetone (5e). $\gamma/1,2$ -Product 6e: IR (TF) 3420, 1580 cm⁻¹; NMR (CDCl₃) 0.11 (s, 9, SiMe₃), 1.51 (s, 3, CH₃), 2.89 (d, $J = 7$ Hz, 2, CH₂CH=C(SPh)SiMe₃), 6.37, 6.70 (2 d, *J* $(SPh)Sim_e$ 3); mass spectrum (70 eV), m/e 367, 350, 222, 147, 73. $= 16$ Hz, CH=CHC₆H₅), 6.83 (t, $J = 7$ Hz, 1, CH₂CH=C-

Anal. Calcd for $C_{22}H_{28}OSSi$: C, 71.68; H, 7.66. Found: C, 71.52; H, 7.75.

 $\gamma/1,4$ -Product 7e: IR (TF) 1715, 1582 cm⁻¹; NMR (CDCl₃) δ 0.01 (s, 9, SiMe₃), 2.09 (s, 3, COCH₃), 6.49 (t, $J = 7$ Hz, 1, CH₂CH=C(SPh)SiMe₃); mass spectrum (70 eV), m/e 368, 310, 222, 134, 73.

Anal. Calcd for $C_{22}H_{28}OSSi$: C, 71.68; H, 7.66. Found: C, 71.76; H, 7.66.

Adducts of Chalcone (5f). $\gamma/1,2$ -Product 6f: IR (TF) 3453, 1579 cm⁻¹; NMR (CDCl₃) δ 0.11 (s, 9, SiMe₃), 2.43 (s, 1, OH), 3.32 $(d, J = 7$ Hz, 2, CH₂CH=C(SPh)SiMe₃), 6.60, 6.89 (2 d, $J = 16$ SiMe₃), 7.1-7.6 (m, 15, aromatic H); mass spectrum (70 eV), m/e (relative intensity) 412 ($M^+ - H_2O$), 222, 209 (base), 105. Hz, 2, CH=CHC₆H₅), 6.80 (t, $J = 7$ Hz, 1, CH₂CH=C(SPh)-

Anal. Calcd for $C_{27}H_{30}OSSi$: C, 75.30; H, 7.02. Found: C, 75.16; H, 7.07.

 $\gamma/1,$ 4-Product 7f: IR (TF) 1684, 1595, 1579 cm⁻¹; NMR $(CDCI_3)$ δ 0.03 (s, 3, SiMe₃), 2.87 (m, 2, CH₂CH=C(SPh)SiMe₃), 3.32 (d, $J = 7$ Hz, 2, CH₂COPh), 3.62 (m, 1, CHPh), 6.50 (t, $J =$ 7 Hz, 1, CH₂CH==C(SPh)SiMe₃), 7.2-8.2 (m, 15, aromatic H); mass spectrum (70 eV) , m/e (relative intensity) 430, 222, 105 (base). Anal. Calcd for $C_2H_{30}OSSi$: C, 75.30; H, 7.02. Found: C, 75.16; H, 7.06.

l-(n-Butylthio)-l-(trimethylsilyl)-2-propene (8). The procedure⁵ described for the preparation of 4 was repeated with 28.6 g (0.22 mol) of allyl *n*-butyl thioether, 158 mL of 1.4 M sec-butyllithium (0.22 mol), and *52* g (0.48 mol) of chlorotrimethylsilane to afford 19.3 g (43%) of 8: bp 77–79 °C (3.8 mm); IR (TF) 1617 cm⁻¹; NMR (CDCl₃) δ 0.10 (s, 9, SiMe₃), 0.90 (m, 5.55-5.8 (m, 3, vinylic H); mass spectrum (70 eV), m/e (relative intensity) 202 (M', 16), 145 (51), 73 (100). 3, S(CH₂)₃CH₃), 2.70 (d, $J = 10$ Hz, CHCH=CH₂), 4.85-5.15 and

Anal. Calcd for $C_{10}H_{22}SSi$: C, 59.33; H, 10.96. Found: C, 59.30; H, 11.01.

In addition, 16.8 g (37%) of **(E)-l-(n-butylthio)-3-(trimethyl**silyl)-1-propene was obtained: bp $88-89$ °C (3.8 mm); IR (TF) 1600 cm⁻¹; NMR (CDCl₃) δ 0.03 (s, 9, SiMe₃), 0.91 (t, $J = 7$ Hz, 3, $S(CH_2)_3CH_3$, 5.5-5.9 (m, 2, vinylic H); mass spectrum (70 eV), m/e (relative intensity) 202 (M⁺, 14), 145 (50), 73 (100).

Anal. Calcd for $C_{10}H_{22}SSi$: C, 59.33; H, 10.96. Found: C, 59.36; H, 11.03.

Addition of 1-(n **-Butylthio)-l-(trimethylsilyl)-2-propene (8) to** Benzalacetone (5e). **The procedure described for the addition of** 4 **to enones was repeated with 8 and** 5e **to afford** γ /1,2-product: IR (TF) 3420, 1600, 1580 cm⁻¹; NMR (CDCl₃) δ **0.17** (s, 9, **SiMe₃), 0.90** (t, $J = 7$ Hz, 3, **S(CH₂)₃CH₃), 1.42** (s, 3, $(t, J = 7 \text{ Hz}, 1, \text{ CH}_2\text{CH}=\text{C}(\text{SC}_4\text{H}_9\text{-}n)\text{Si}(\text{CH}_3)_3), 7.1-7.5 \text{ (m, 5)}$ **aromatic H); mass spectrum (70 eV),** *m/e* **(relative intensity) 202 (50), 147 (loo), 93 (24), 73 (69).** $C(OH)CH_3$, **6.15, 6.76** (2 **d**, $J = 16.5$ **Hz, 2,** $CH = CHPh$, **6.35**

Anal. Calcd for C₂₀H₃₂OSSi: C, 68.90; H, 9.25. Found: C, 69.09; **H, 9.30.**

 $\gamma/1,4$ -**Product: IR** (TF) 1716 cm^{-1} ; **NMR** (CDCl₃) δ 0.09 (s, **3,** SiMe_3 **, 0.91** (t, $J = 7 \text{ Hz}$, 3, $\text{S}(\text{CH}_2)_3\text{CH}_3$), 2.05 (s, 3, COCH₃), **6.06** (**t**, $J = 7$ **Hz**, **1**, $CH_2CH = C(SC_4H_9 - n)\text{Si}(CH_3)_3$, **7.2-7.5** (**m**, **5, aromatic H); mass spectrum (70 eV),** *m/e* **(relative intensity) 348 (M', 13), 201 (loo), 73 (98).**

Anal. Calcd for $C_{20}H_{32}OSSi$: C, 68.90 ; H, 9.25 . Found: C, 69.08 ; **H, 9.33.**

Acknowledgment. We thank the National Institutes of Health (Grant CA 30065) for their generous financial support and the University of Wyoming Research Coordination Committee for a Faculty Research Grant-In-Aid. We also thank the National Science Foundation (Grant CHE-8026553) for funds to purchase a JEOL 270-MHz NMR spectrometer and Dr. Richard A. Heppner of the Laramie Energy Technology Center for determining exact-mass spectra.

Registry **No.** 4, **78905-13-2;** 5a, **930-68-7;** 5b, **1193-18-6;** 5c, **930-30-3;** 5d, **1121-66-0; 5e, 122-57-6;** 5f, **94-41-7;** 6a, **84029-01-6;** 6b, **84029-03-8;** 6d, **84029-05-0;** 6e, **84029-07-2;** 6f, **84029-09-4;** 7a, **84029-02-7;** 7b, **84029-04-9;** 7d, **84029-06-1;** 7e, **84029-08-3;** 7f, **84029-10-7; 8, 84029-11-8; (E)-l-(n-butylthio)-3-(trimethylsily1)-1-propene, 84029-12-9; l-(trimethylsilyl)-l-(butylthio)-4 methy1-6-phenylhexa-1,5-dien-4-01, 84029-13-0; 7-(trimethylsilyl)-7-(butylthio)-4-phenylhept-6-en-2-one, 84029-14-1.**

Poly(ethy1ene glycol)-Grafted Copolymers as Synthetic Equivalents of Benzyltriethylammonium Chloride for Triphase Catalytic Alkylation'

> **Yoshikazu Kimura, Piotr Kirszensztejn, and Steven L. Regen***

Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233

Received June 15, 1982

Benzyltriethylammonium chloride has enjoyed wide popularity as a catalyst for alkylation reactions in organic-aqueous hydroxide two-phase systems.² In an effort to expand the synthetic utility of this and related quaternary ammonium salts, attempts have recently been made to develop polymeric equivalents for use in analogous triphase conversions. $3-5$ Commercial anion-exchange resins bearing pendant quaternary ammonium groups ex-

Table I. Monoalkylation of Phenylacetonitrile with 1-Bromobutane"

catalyst	conversion, %	yield, ^b % 0.3
none	0.3	
	96, 94, ^c 97 ^d	92
Ħ	71	63
ш	74	70
IV	58	55
v	30, 18 ^c	22
VI	24	22
VII	65	64
VIII	54	52
$PhCH2N(C2Hs)3Cl$	96	94

*^a***Reaction of 0.82 mmol of phenylacetonitrile with 0.83 mmol of n-bromobutane plus 0.5 mL of 60% aqueous KOH and 0.05 mmol of catalyst for 1.5 h at** 23 °C. ^b GLC yield. ^c Yield from reused catalyst. **Yield from second reuse of catalyst.**

hibit modest triphase catalytic activity for C-alkylation of phenylacetonitrile? Similar polymers have also been used successfully in alkylating benzyl methyl ketone.⁴ Because of their susceptibility toward dequaternization, however, the ultimate value of these resins for practical organic synthesis appears questionable.⁶ Polymer-supported crown ethers and cryptands can also function as triphase catalysts for alkylation reactions and are clearly preferable in terms of chemical stability and reusability. 4 They are, however, far more difficult and expensive to prepare.^{$7-9$} In this paper we report synthetic results which show that simple poly(ethy1ene glycols) grafted to cross-linked polystyrene are remarkably active and stable triphase catalysts for the alkylation of nitriles, ketones, and alcohols.

Resins I-VI11 were prepared from commercial chloro-

 $\mathcal{F} \mapsto \mathcal{F}$

polystyrene gel-1% divinylbenzene (200-400 mesh)

methylated polystyrene by using standard grafting pro- redures.^{10-13} For comparison of their efficacies for promoting alkylation, the conversion of phenylacetonitrile to 2-phenylhexanenitrile was chosen as a standard reaction

$$
(eq 1). \tThis transformation has been used extensively inPhCH2CN + CH3(CH2)3Br \rightarrow PhCH(n-C4H9)CN (1)
$$

judging catalyst performance in both liquid-liquid two-

⁽¹⁾ Supported by the Division of Basic Energy Sciences of the Department of Energy (Contract EG-77-S-02-4446).

^{(2) (}a) Makosza, M. Pure Appl. Chem. 1975, 43, 439. (b) Starks, C. M.; Liotta, C. "Phase Transfer Catalysis"; Academic Press: New York, 1978. (c) Weber, W. P.; Gokel, G. W. "Phase-Transfer Catalysis in Or-
ganic Synthesis" *S.:* **"Phase-Transfer Catalysis", Verlaa Chemie: Weinheim/Berastr.,** ,- **Germany, 1980.**

⁽³⁾ Zadeh, H. K.; Dou, H. J.; Metzger, J. *J. Org. Chem.* 1978, 43, 156.
(4) Montanari, F.; Tundo, P. *J. Org. Chem.* 1982, 47, 1298.
(5) Regen, S. L. *Angew. Chem., Int. Ed. Engl.* 1979, *18*, 421.

⁽⁶⁾ **Dou, J. M.; Gallo, R.; Massanaly, P.; Metzger, J.** *J. Org. Chem.* **1977,42, 4275.**

⁽⁷⁾ Cinquini, M.; Colonna, *S.;* **Molinari, H.; Montanari, F.; Tundo, P.** *J. Chem.* **Soc.,** *Chem. Commun.* **1976,394-396. Molinari, H.; Montanari, F.; Tundo, P.** *Ibid.* **1977, 639. Montanari, F.; Tundo, P. J.** *Org. Chem.* **1981,46, 2125.**

⁽⁸⁾ Fukunishi, K.; Czech, B.; Regen, S. L. J. Org. Chem. 1981, 46, 1218.
(9) Smid, J. Pure Appl. Chem. 1976, 48, 343. Bradshaw, J. D.; Stott, P. E. Tetrahedron 1980, 36, 461. Mathias, L. J.; Al-Jumah, K. Polym.

News **1979,6,9. Tomoi, M.; Kihara, K.; Kakiuchi, H.** *Tetrahedron Lett.* **1979, 3485.**

⁽¹⁰⁾ Regen, S. **L.; Besse, J. J.; McLick, J. J.** *Am. Chem. SOC.* **1979,101, 116. Regen,** *S. L. Ibid.* **1976, 98, 6270.**

⁽¹¹⁾ McKenzie, W. M.; Sherrington, D. C. J. *Chem. SOC., Chem. Commun.* **1978,541.**

⁽¹²⁾ Au, A. T.; Freedman, H. H. US. Patent 4173693, Nov 1979. (13) Kimura, Y.; Regen, *S.* **L. J.** *Org. Chem.* **1982, 47, 2493.**